One-step synthesis and some Reactions of Ethyl 10-(Ethoxycarbonyl-3,4-dimethylpyrrol-2-yl)-1,2-dimethylpyrrolo[1,2-b]isoquinoline-3-carboxylate

Ming Li, ${ }^{a}$ Yiming Yao, ${ }^{a}$ Yu Chen, ${ }^{a}$ Zheng Xu, ${ }^{*, a}$ Xiaozeng You ${ }^{a}$ and Xiaoying Huang ${ }^{b}$
${ }^{a}$ Coordination Chemistry Institute, the State Key Laboratory of Coordination Chemistry, Nanjing
University, Nanjing (210093), P. R. China
${ }^{b}$ Fujian Institute of Research On the Structure of Matter, Chinese Academy of Science, Fuzhou (350002), P. R. China

The title compound 2 has been synthesized by the acid-catalysed condensation of ethyl 3,4-dimethylpyrrole-2-carboxylate 1 with phthalaldehyde and its structure has been confirmed spectroscopically. The photodimerization and Diels-Alder reactions of compound 2 have been investigated. The X-ray crystal structure of the photodimer 3, which indirectly provides evidence for the identity of compound 2 , has been determined.

Phenyl-containing bis(dipyrrylmethanes), precursors for 'gable and flat porphyrin' dimers, model compounds which have been widely used to mimic the multichromophoric electron-transfer events of photosynthesis, ${ }^{1}$ have been obtained from condensation of ethyl 3,4-dimethylpyrrole-1-carboxylate 1 with isophthalaldehyde or terephthalaldehyde in the presence of concentrated HCl^{2} Treatment of the pyrrole 1 with phthalaldehyde, however, gave the new compound 2 instead of the desired product. Here, we report the synthesis and spectra of compound 2 together with some of its reactions e.g. photoaddition and Diels-Alder reaction, which support our structural assignment.
The acid-catalysed condensation of the pyrrole 1 with phthalaldehyde (molar ratio is $4: 1$ or $2: 1$) in refluxing 95% ethanol afforded compound $\mathbf{2}$ in moderate yield; the structural

1
2
assignment was made on the basis of analytical and spectroscopic data. The EI mass spectrum $\mathrm{M}^{+} 432$ and the elemental analysis confirmed the formula of the compound as $\mathrm{C}_{26}{ }^{-}$ $\mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$. Its IR spectrum showed absorptions at 3283 (NH) and $1708 \mathrm{~cm}{ }^{1}$ (ester $\mathrm{C}=\mathrm{O}$) whilst its ${ }^{1} \mathrm{H}$ NMR spectrum showed a singlet signal at $\delta 9.45 \mathrm{ppm}$ (attributed to a proton adjacent to the nitrogen atom), differences in the chemical shifts between the pyrrolic CH_{3} signals ($\delta 2.44$ and 2.42 , and 1.75 and 1.72 ppm) being larger ($c a .0 .70 \mathrm{ppm}$) than those of the corresponding signals in the pyrrole $\mathbf{1}$; this evidence is in good agreement with the formation of a fused ring system.
At first sight, compound 2, bearing similarities to anthracene, is formally a 14 -electron system and, therefore, potentially aromatic and capable of photodimerization and undergoing Diels-Alder reactions.

On irradiation with a 200 W tungsten lamp compound 2 gave the dimer 3 in methanol. Its ${ }^{13} \mathrm{C}$ NMR spectrum exhibited a quaternary carbon (sp^{3}) signal at $\delta 55.4$ and its ${ }^{1} \mathrm{H}$ NMR spectrum showed that the aromatic protons, especially $5-\mathrm{H}$, were shifted to highfield relative to those for the parent compound 2 ; this indicated that cycloaddition occurred at the 5 ,

3

4a
exo-

$4 b$
endo-

10-positions. It was noteworthy that one set of the pyrrolic CH_{3} signals appeared at abnormally highfield ($\delta 1.03$ and 1.01), consistent with the assignment of structure 3 since these groups were located in the shielded zone of the benzene ring current. The mass spectrum of 3 is nearly identical with that of the parent compound 2, both showing a strong ion at m / z 432, due to the easy retroaddition of the dimer 3 under electron impact. A single crystal structure of $\mathbf{3}$ (Fig. 1) further verified this assignment.
X-Ray crystallographic studies showed that the photodimerization was of the head-to-tail type, analogous to the photoaddition of 9 -substituted anthracenes and, most importantly, provided indirect and unambiguous evidence for the structure of the parent compound 2.
Compound 4 was formed, as a mixture of $\mathbf{4 a}$ and $\mathbf{4 b}$, from the Diels-Alder reaction of 2 with maleic anhydride in refluxing toluene in 57% yield. The position of cycloaddition in compound $\mathbf{2}$ was clear since the $5-\mathrm{H}$ signal, formerly at $\delta 9.45$ ppm, had moved upfield for $\delta 7.13$ (4a) and 7.36 (4b). The IR spectrum showed absorptions at 1847 and $1766 \mathrm{~cm}^{-1}$ for the saturated cyclic acid anhydride (COOOC).

In order to distinguish each diastereoisomer NOESY spectra

Fig. 1 X-Ray molecular structure of the dimer 3
of $\mathbf{4 a}$ and $\mathbf{4 b}$ were recorded. The NH resonance at $\delta 10.01$ had a strong crosspeak to the H-peak at $\delta 3.94$ (labelled 3) (see Supplementary material),* indicating that the NH is in spatial proximity to the hydrogen at 3-position, therefore, according to the relative intensity, the major adduct is considered to be $\mathbf{4 a}$ which arises by exo-addition of the dienophile to the leasthindered face of $\mathbf{2}$.

Experimental

General.- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker Am instrument at 500 MHz in CDCl_{3} using TMS (SiMe_{4}) as the internal standard. J Values are given in Hz . IR spectra were performed on a Nicolet 170SX FTIR machine as KBr pellets. Mass spectra were recorded on a VG-ZAB-HS spectrometer. M.p.s were uncorrected.
Ethyl 3,4-dimethylpyrrole-2-carboxylate 1 was prepared following a literature procedure. ${ }^{3}$

Ethyl 5-(Ethoxycarbonyl-3,4-dimethylpyrrol-2-yl)-1,2-di-methylpyrrolo[1,2-b]isoquinoline-3-carboxylate 2.-Phthalaldehyde ($134 \mathrm{mg}, 1 \mathrm{mmol}$) and the pyrrole $1(334 \mathrm{mg}, 2 \mathrm{mmol})$ dissolved in absolute ethanol ($20 \mathrm{~cm}^{3}$) were treated with concentrated $\mathrm{HCl}\left(0.4 \mathrm{~cm}^{3}\right)$. After the solution had been heated at reflux for 5 h under N_{2}, the resulting suspension was refrigerated overnight. The product was then filtered off, washed with 95% EtOH and dried in the dark ($293 \mathrm{mg}, 69 \%$), m.p. $244-246^{\circ} \mathrm{C}$ (Found: C, 72.6; H, 6.05; N, 6.6. Calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 72.13 ; \mathrm{H}, 6.47 ; \mathrm{N}, 6.47 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3283$ (NH) and 1708 (ester C=O); $\delta_{\mathrm{H}} 10.31(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.45(1 \mathrm{H}, \mathrm{s}, 5$ H), $7.58(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.27(1 \mathrm{H}, \mathrm{d}, J 9.5$, ArH), $7.15-7.13$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.43-4.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2}\right)$,

[^0]2.44 and $2.42\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.75$ and $1.72(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.36(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 9.60,9.95,10.63,12.52,14.36,14.46\left(\mathrm{CH}_{3}\right)$, $59.28,59.64\left(\mathrm{CH}_{2}\right), 107.95,108.69,115.37,116.71,120.86$, 121.54, 124.06, 126.18, 126.40, 126.55, 126.71, 126.87, 127.04, $128.29,134.84,135.54,\left(\mathrm{sp}^{2} \mathrm{C}\right.$ and CH$), 161.94,162.23(\mathrm{C}=\mathrm{O})$; $m / z(\%)(E I) 432\left(\mathrm{M}^{+} 100 \%\right), 386(41), 357$ (16) and 315 (20).

Dimer 3.-A suspension of compound $\mathbf{2}$ in methanol was irradiated with a 200 W tungsten lamp and periodically shaken until the orange solid disappeared. After a little of methanol had been removed by evaporation the precipitated pale yellow solid was filtered off, m.p. $>110^{\circ} \mathrm{C}$ (decomp.) (Found: C, $72.1 ; \mathrm{H}$, 6.5; $\mathrm{N}, 6.4$. Calc. for $\mathrm{C}_{52} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8}: \mathrm{C}, 72.14 ; \mathrm{H}, 6.47 ; \mathrm{N}, 6.47 \%$); $\delta_{\mathrm{H}} 11.14(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.47(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.09(2 \mathrm{H}, \mathrm{d}, J 7.32$, $\mathrm{ArH}), 6.92$ (2 H , dd, $J 7.34$ and 7.32, ArH), 6.79 ($2 \mathrm{H}, \mathrm{dd}, J 7.34$ and 8.54, ArH), $6.23(2 \mathrm{H}, \mathrm{d}, J 8.54, \mathrm{ArH}), 4.54-4.46(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 4.44-4.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.35\left(4 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.95, \mathrm{OCH}_{2}\right)$, $2.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.76\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.51(6 \mathrm{H}, \mathrm{t}, J 6.45$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{t}, J 6.95, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and 1.03 and 1.01 $\left(12 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 9.09,9.60,10.36,11.00,14.37,14.48$ $\left(\mathrm{CH}_{3}\right), 55.46\left(\mathrm{sp}^{3} \mathrm{C}\right), 59.57,59.86\left(\mathrm{CH}_{2}\right), 63.54(\mathrm{CH}), 116.75$, $117.38,117.92,120.85$ (quarternary $\mathrm{sp}^{2} \mathrm{C}$), 124.70, 126.08, $126.21,126.90,130.21\left(\mathrm{sp}^{2} \mathrm{CH}\right), 131.99,137.82,138.00$ and 138.66 (quaternary sp ${ }^{2} \mathrm{C}$); $m / z(\%$) (EI) 432 (100%) 386 (40), 357 (20) and 315 (18).

Diels-Alder Adduct 4.-A solution of compound $2(200 \mathrm{mg}$, 0.46 mmol) and maleic anhydride ($45 \mathrm{mg}, 0.46 \mathrm{mmol}$) in toluene ($15 \mathrm{~cm}^{3}$) was heated for 8 h under reflux. After it had cooled the mixture was diluted with a little ether and then refrigerated. The precipitate was filtered off and washed with ether to afford a yellow solid mixture ($140 \mathrm{mg}, 57 \%$) which was separated by flash chromatography (silica, ethyl acetate-light petroleum, 1:6) to give $\mathbf{4 a}$ and $\mathbf{4 b}$ (Found: C, $68.55 ;$ H, 6.1; $\mathbf{N}, 4.8$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{C}, 67.92 ; \mathrm{H}, 5.66 ; \mathrm{N}, 5.22 \%$); $v_{\max } / \mathrm{cm}^{-1} 3382 \mathrm{~m}$ $(\mathrm{NH}), 1846 \mathrm{~m}$ and 1766s (COOOC), 1670s (COOEt); 4a m.p.
$232-234{ }^{\circ} \mathrm{C}, \delta_{\mathrm{H}} 10.01(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.51(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{ArH}), 7.35$ $(2 \mathrm{H}, \mathrm{tt}, J 6.6$ and $9.5, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{ArH}), 7.13(1 \mathrm{H}, \mathrm{d}$, $J 3.6,5-\mathrm{H}), 4.40-4.36\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.94(1 \mathrm{H}, \mathrm{d}, J 9.0,3-\mathrm{H})$, $3.71(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and $9.0,4-\mathrm{H}), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.45-1.40\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; $\mathbf{4 b}$ m.p. $222-224^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 10.29(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.54$ ($1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{d}, J 1.9,5-\mathrm{H}), 7.29(2 \mathrm{H}, \mathrm{tt}, J 6.9$ and 7.4, ArH) , $7.00(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 4.37-4.33(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.99(1 \mathrm{H}, \mathrm{d}, J 8.7,3-\mathrm{H}), 3.66(1 \mathrm{H}$, dd, $J 8.7$ and 1.9 , $4-\mathrm{H}), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.42-1.39\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; m / z(\%)$ (EI) $530\left(\mathbf{M}^{+} 3 \%\right), 432(100), 386(57), 357(27)$ and $315(22)$.

Crystal Data for Compound 3. $-\mathrm{C}_{52} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8}, \mathrm{M}, 865.04$. Monoclinic, $a=9.728(4) \quad b=18.666(6), \quad c=13.056(4) \AA$, $\beta=102.35(4)^{\circ}, V=2316(1) \AA$ (by least-squares refinement of 25 accurately centred reflections, $\lambda=0.71069 \AA$), space group $P 2_{1} / a$ (No. 14), $Z=2, D_{\mathrm{c}}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal dimension: $0.25 \times 0.25 \times 0.12 \mathrm{~mm}$, pale yellow prism. $(\mathrm{Mo}-\mathrm{K} x)=0.78 \mathrm{~cm}^{-1}$.

Data collection and processing. Enraf-Nonius CAD 4 diffractometer, $\omega / 2 \theta$ mode with ω scan width $=0.7+$ $0.35 \tan \theta$, and ω scan speed $5.5 \mathrm{deg} \mathrm{min}^{-1}$, graphitemonochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation; 4481 reflection measured ($0<\theta<25$), 4221 unique [merging $R=0.013$ after absorption correction (max., min. transmission factors $=1.05,0.85$)], giving 1450 with $I>3 \sigma(I)$. Intensity standards measured repeatedly during data collection showed no significant drift.

Structure Analysis and Refinement.-Direct methods (MITHRIL) ${ }^{4}$ revealed all non-hydrogen atoms. Full-matrix least-squares refinement (TEXSAN $+V 2.1$) with all nonhydrogen atoms anisotropic and hydrogen atoms isotropic with the rest in calculated positions with fixed isotropic vibrational parameters. The weighting scheme $w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$ gave satisfac-
tory agreement analysis. Final R and R_{w} values are $0.075,0.079$. Scattering factors and LP^{5} were applied. All calculations were carried out on MICRO-VAX3100. Fractional atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.* The molecule and its atomic labelling is displayed in Fig. 1.

Acknowledgements

This work is supported by a grant for a key research project from the State Science and Technology Commission, and the National Natural Science Foundation of China.

* For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, 1994, Issue 1.

References

1 (a) J. Rodriguez, C. Kirmaier, M. R. Johnson, R. A. Friener, D. Holten and J. L. Sessler J. Am. Chem. Soc., 1991, 113, 1650 and references cited therein; (b) H. Meier, Y. Kobuke and S. Kugimiya, J. Chem. Soc. Commun., 1989, 923.
2 (a) J. L. Sessler, M. R. Johnson, S. E. Creager, J. C. Fettinger and J. A. Ibers, J. Am. Chem. Soc., 1990, 112, 9310: (b) Ming Li, unpublished work.
3 A. Helms, D. Heiler and G. McLendon, J. Am. Chem. Soc., 1992, 114, 6227.

4 C. J. Gilmore, J. Appl. Crystallogr., 1984, 17, 42.
5 D. T. Cromer and J. T. Waber in International Table for X-Ray Crystallography, Kynoch Press, Birmingham, England. 1974, Vol. IV.

Paper 4/02458C
Received 26th April 1994 Accepted 13th May 1994

[^0]: * Sup No. 57024 (17 pages); for details of the Supplementary publication scheme, see 'Instructions for Authors (1994)', J. Chem. Soc., Perkin Trans. 1, 1994, Issue 1.

